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Synopsis
In the theory of relativity the thermodynamical state of a homogeneous isotropic body is 

determined by five independent variables. In the present paper it is shown that the thermody
namical properties of the body are completely determined by relativistically invariant functions 
0 and 0 of the state variables, which are the appropriate generalizations of the classical free 
energies of Helmholtz and Gibbs. When the ‘potential’ ø (or 0) is given, all thermodynamical 
quantities, such as the four-momentum, entropy etc., can be obtained by partial differentiations 
of the potentials with respect to the state variables. Finally it is shown that the potentials 
0 and 0 have a simple statistical interpretation in the relativistic generalization of Gibbs’ 
classical statistical mechanics, which allows to calculate the functions ø and 0 when the mechan
ical constitution of the system is known.
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1. Introduction and Survey

In classical non-relativistic thermodynamics the thermodynamical potentials 
—the free energies of Helmholtz and Gibbs — play an important role. 

When a potential is given as a function of the thermodynamical state 
variables all state functions can be obtained by partial differentiations 
of the potential, i.e. the thermodynamical properties of the body in question 
are completely determined by the potentials. For a homogeneous isotropic 
body at rest and in thermal equilibrium the state is determined by two 
variables, for instance the volume V° and the temperature T°, and the free 
energy of Helmholtz is defined by

FO=H°-T°S°, (1.1)

where H° and S° are the energy and the entropy, respectively. When F° 
is known as a function of T° and V°, the entropy and pressure are given by

S° = -
dF°(T°, V°)

dT°
dF°(T°, V°)

(1-2)

and by (1.1) it follows for the energy

(1-3)

In a relativistic theory, the relations (1.2) must still be valid in the rest 
system S° of the body, but there is no a priori reason that the same relations 
should hold in every system of inertia S. The principle of relativity requires 
only that the corresponding relativistic relations must be covariant and must 
reduce to (1.2) in the rest system. Nevertheless, Planck in his classical 
paper [1] tried to determine transformation laws for the thermodynamical 
quantities in such a way that relations of the form (1.2) remain valid in 
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every system of inertia S. If v is the velocity of the body (or of S°) with 
respect to S, we have

p = pQ, V=V°^l-ß2, ß = v/c. (1-4)

The pressure is relativistically invariant, and the same is assumed for the 
entropy, i.e.

S = S°. (1.5)

In order that relations (1.2) be valid also for the transformed quantities, we 
have then to accept Planck’s transformation laws for the free energy and 
temperature in the form

F = F°|/l^ 

TP = T°\/T^ß2,

In fact, from (1.2 —7) one easily finds the relations

„ 0F(TP,V) dF(TP,V)
S =--------------------------------------- , p =------------------------------------------

A'T' r A AT

(1-6)

(1.7)

(1-8)

which have the same form as the equations (1.2) valid in the rest system.
By this argument Planck was led to introduce a temperature Tp relative 

to the arbitrary system of inertia S given by the formula (1.7) and his point 
of view has been accepted again quite recently in a paper by R. Balescu [2]. 
However, in the meantime H. Ott [3] had given strong arguments for 
introducing a different temperature To given by

To = T^l-ß2. (1.9)

In fact, this formula follows uniquely (see (1.35)) if one wants the second 
law for reversible processes to have the same form 

c dQrev 
aS =--------

as in the rest system, where we have

1 o
(1-10)

(1-11)
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The violent discussions in the literature following Ott’s paper have made 
it clear that the relativity principle alone does not lead to a unique concept 
of temperature relative to an arbitrary system S, for the transformation law 
for the temperature will depend on which of the classical thermodynamical 
relations holding in the rest system, are assumed to retain their form under 
Lorentz transformations. Beforehand it does not seem quite natural to base 
the definition of temperature on the requirement of form-invariance of the 
relations (1.2, 8). Firstly, they refer to the rather special case of a homogene
ous isotropic body and it would seem more natural to postulate the form
invariance of the first and the second laws of thermodynamics which are 
believed to be valid for any thermodynamic system. Secondly, in an arbi
trary system of inertia the definition of the state of a homogeneous and 
isotropic body requires the fixation of live (not two) independent variables, 
for instance besides T° and V° the three components of the velocity v. 
This is also the case in the non-relativistic theory, but there the internal 
thermodynamic properties are entirely separated from the external kinetic 
properties of the body. This is not so in relativity theory since the inertial 
mass of the body depends on the internal state. Therefore it is to be expected 
that the pertinent relativistic generalization of the equations (1.2) will con
sist of five equations which express five thermodynamical quantities as partial 
derivatives of the relativistic potentials with respect to five suitably chosen 
independent state variables. These equations must of course reduce to the 
two equations (1.2) in the rest system S°.

In section 2 of the present paper we shall see that these expectations are 
fulfilled when we use the formulation of relativistic thermodynamics which, 
as was shown in a recent paper [4], is suggested by relativistic statistical 
mechanics. In the remaining part of the present section we shall give a short 
account of the relativistic formulation of the first and the second laws 
obtained in the just quoted paper.

In view of the above mentioned arbitrariness in the general definition 
of the temperature, it was proposed to abandon the notion of a separate 
temperature relative to the different systems of inertia. Therefore, when we 
speak of the temperature of the body we simply mean the proper temperature 
as measured by a thermometer at rest in the body. In any system of inertia 
S different from S° it appears more adequate to speak of a temperature 
4-vector as defined by Akzeliès [5]. If V1 is the four-velocity of the body 
with components

yt = (yV, yc} , y = (1 - ß2)“l (1-12)
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the temperature vector is
r = rn^ic. (M3)

In the rest system this 4-vector has only the one non-vanishing component 
T04 which is equal to the proper temperature T°. In an arbitrary system S 
the fourth component 7’4 is equal to the Ott temperature (1.9).

In many thermodynamical considerations it is more convenient to intro
duce the reciprocal proper temperature

9 = 1/T° (1.14)

as a measure of the thermal state. Then, if we also introduce a function

ø°(0°, yo) _ ßoFo (1-15)

(-ø° is the so-called Planck potential), the relations (1.2) take the form

1 Ö0O(0O, V°)
00 d v ° (1-16)

Since 0° goes to zero with increasing temperature, Truesdell [6] has coined 
the word coldness for the quantity 0°. Instead of the temperature vector T\ 
it is also convenient to introduce a “coldness vector” 0ï by

0< = 0°V/ (1.17)

which in the rest system has the components

00i = c0o = c/00, (ltl8)

In an arbitrary system S the fourth component 04 is equal to c times the 
reciprocal of the Planck temperature (1.7). In contrast to the Vi, which 
satisfies the relation

ViV* = - c2, (1.19)

the components 0i of the coldness vector are four independent variables 
which may replace T° and v as state variables. Thus, for a homogeneous 
isotropic body the thermodynamic state is completely determined by the five 
variables (0f, V°) or (0f, p).

The coldness vector is a time-like 4-vector with the norm
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0(09 = [/-OiøVc. (1.20)

From (1.17-19) it follows that the value of the invariant 0 is equal to the 
coldness,

0 = 0° (1.21)
and that

V< = 0</0. (1.22)

Thus, for given 0* the coldness and the four-velocity (and so v) are determ
ined by (1.21, 22).

Now, as was shown in ref. 4, the appropriate relativistic expressions for 
the first and second laws of thermodynamics arc the following. For an
infinitesimal process we have

1. law: dGi = dli + dQi (1-23)

2. law: dS > — f^dQi. (1-24)
In (1.23)

dGi = {dG, -dH/c} (1-25)

is the change of the four-momentum of the body

Gi={G, -H/c}, (1-26)
and

dQ, - {dQ, -dQlc] (1-27)

is the four-momentum of supplied heat in the process, i.e. dQ is the heat 
energy and dQ is the momentum conveyed to the body by the heat supply. 
Finally,

dlt = {dl, -dA/c} (1.28)

is the ‘four-impulse’ of the external mechanical forces, i.e. di is the impulse 
or the time integral of the total mechanical force acting on the body and 
dA is the work performed by these forces during the process.

In non-relativistic thermodynamics the first law is expressed by one 
equation only, the law of conservation of energy. Due to the symmetry 
between momentum and energy in the theory of relativity, the first law has 
to be supplemented by three other equations expressing the conservation of 
momentum. In general neither Gi, dGi nor dli are 4-vectors, but the differences

dQi = dGi ~ dit (1-29)
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are the covariant components of a 4-vector for any process and for an 
arbitrary thermodynamical system [7] 18] [9]. This important result was ob
tained first in the case of a fluid in ref. 7. In ref.s 8 and 9 the proof was 
given for an arbitrary thermodynamical system. For the validity of this the
orem it is essential that dit by definition includes the impulse and the work 
of truly ‘mechanical’ forces only, i.e. the force acting on any infinitesimal 
part of the body, combined with the rate of work, must form a usual Min
kowski four-force.

For a reversible process it can further be shown [7] that the four-momen
tum t/Qlev of supplied heat is proportional to the four-velocity, i.e.

(1.30)

Since (F and dQi are 4-vectors the right hand side of (1.24) is an invariant 
which, on account of (1.18, 27), has the value

-ø'dQ, ---f4r - yo°- (131>

Therefore, by (1.5), the relation (1.24) is equivalent to the relation

(1-32)

which is known to be valid in the rest system. Since the equality sign in 
(1.32) holds for reversible processes only, it follows that also in (1.24) the 
validity of the equality sign means that the process in question is reversible. 
For such processes dQ*ev is given by (1.30), which for i = 4 gives

dQrev - dQ?ev/|/l-/î2 (1.33)

on account of (1.12, 27). Thus, for a reversible process, (1.24) becomes

rfOrevlA - rf2

yo (1-34)

by means of (1.31, 33). This may also be written in the form (1.10) 

(1.35)
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where To is the Ott temperature (1.9). However, it should be noted that
(1.24) for an irreversible process in general is not equivalent to

dS >
dQ (1.35)

The latter relation is valid only for very special irreversible processes such 
as in the case of pure heat conduction.

After this short survey of the general laws of relativistic thermodynamics, 
we shall in the next section give the appropriate relativistic generalization 
of the thermodynamical potentials and of the classical relations of the type 
(1.16). Finally, in the last section the statistical interpretation of the relativistic 
potentials is given, which will allow us to calculate these quantities when 
the mechanical constitution of the system is known.

2. Relativistically Invariant Thermodynamical Potentials 
for Homogeneous Isotropic Bodies

The thermodynamical system considered in this section is a fluid, contained 
in a vessel of rest volume V°, which exerts normal pressure only against 
the walls of the container. In thermal equilibrium the four-momentum of 
the fluid has the following components in the Lorentz system S [10]:

Gt = {G,- H/c} = {(H° + p°V°)y®/c2, - (H° + ^V0) y/c} (2.1) 

where the superscript “0” refers to the rest system S° of the fluid. The Gi 
are not the components of a 4-vector. Nevertheless, ViGi is an invariant, 
for we have in any system S by (1.12) and (2.1)

Vr<G/ = (H° + p°V°')y2ßz-(H° + ß2jo°V°)y2,

= - H°. (2.2)

Hence, - V’G« is equal to the rest energy.
Besides the four-momentum we shall consider two other quantities Pi 

and Ei which, in contrast to Gi, are 4-vectors. The first one is defined by

Pt = H°Vilc2 (2-3)
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which would he the four-momentum of the system if it were a free system. 
Following the terminology of Landsberg [11], we shall call Pi the inclusive 
four-momentum. The second 4-vector Et is defined by

Et = (H° + p°V°) Vt/c2. (2-4)

A comparison with (2.1) shows that the spatial components EL are equal to 
the components of the momentum G. The fourth component is of the form

with
E4 = - E/c

E = -cEi = (H° + p°V°)y = H + p°V°y(l - /?2)

(2-5)

or, on account of (1.4),
E = H + pV. (2-6)

Hence, E is the quantity usually called enthalpy and therefore Et will be 
named four-enthalpy. Gi, Ei, Pi are obviously related by the equations

Ei = Pi + p°V°Vilc2

Gi = Ei +0t4pVlc.
From (2.2-4) we get

= - (H° + p°V°) = ~E°

where E° is the enthalpy in the rest system, and

FP; = PG/ = - H°. (2-9)

DilTerentation of the second equation (2.7) gives

dGi = dEi + ôud(pV') /c.

Therefore, the first law (1.23) may also be written in the form

where
dEi = dJi + (/Qi (2.10)

d.E = dli - 0ud(pV)lc = {di, - [(/A + d(pV)]/c} (2.11)

on account of (1.28). In contrast to dli, the quantity c/Jf is a 4-vector. This 
follows at once from (2.10) since both dEi and dQi are 4-vectors. Thus, 
0idJi is an invariant with the value
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0^^ = 0OidJ? = cO°dJ°4 = -0°[<M° + d(p0V0)].

11

(2.12)

Here we have used (1.18) and (2.11). For a reversible process the work 
dA° in the rest system is

dA° = -p°dV°. (2.13)
Hence

tfdJ™ = -0°V°dp° = -6V°dp (2.14)

on account of (1.4, 21).
By means of the first and second laws in the forms (2.10) and (1.24) 

applied to a reversible process we get

dS= - e'dQF' = - 6idEi + 0Wfev
or, using (2.14),

dS = - ØME/-0V°c(p. (2.15)

On account of the relations (2.7) between Ei, Pi and Gi, this equation may 
also be written in the alternative forms

and

where

dS = - 0MPi + OpdV° (2.16)

(Pp
dS = -^dGi+ -dV,

c (2.17)

(P = 0OyC = QyC (2.18)

is the fourth component of the coldness vector. Here we have used (1.4, 
12, 19), which imply

Vi = -0c2. (2.19)

Now, we define two invariant state functions and P by

0^-ØiPi-S (2.20)

-0<E<-S. (2.21)

Since O1 is proportional to V*, (2.9) shows that also may be defined as

0 = - QtGi - S. (2.22)

On account of (2.7, 18), (1,4), d> and P are connected by
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0 = <P + OpV°. (2.23)

By differentiating the expressions (2.20—22) and using the appropriate forms 
(2.15-17) of dS, one easily finds

d<P = -Pid6^-0pdVO (2.24)

d<P = - EidOi + 0V°dp (2.25)

d<P = - GpW- (PpdV/c. (2.26)

For a homogeneous isotropic body of the type considered here the 
thermal equilibrium states are determined by five independent variables. 
If we choose (0«, V°) as state variables, every state function appears as a 
function of these variables. In particular this holds for the quantity 0. When 
the function ø (0«, V°) is given, we can calculate five other state functions 
by differentiations of d> with respect to the five variables (0«, V°). In fact 
we get from (2.24) for the inclusive four-momentum and the pressure

Pi = -
00(0«, V°)

00«
1 00(0«, V°)
0 ØV0

(2-27)

Then, expressions for the remaining state functions follow from (2.7, 20). 
For the entropy we get for instance

S = (2.28)

On the other hand, if we choose 0« and p as state variables we get from 
(2.25) the following expressions for the four-enthalpy and the rest volume

00(0«,p) yo 100(0«^ 
00« ’ 0 dp

(2.29)

Finally, choosing 0« and V as state variables, (2.26) gives for the four-mo
mentum and the pressure

00(0«, V) c dQ^.V)
~d6^ ’ P = _ 0* dV (2.30)
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A relativistically invariant state function which is a function of tensorial 
state variables can only depend on invariant combinations of these variables. 
The only invariant combination of the 0* is the norm 0 defined by (1.20). 
Thus, since also Vr° is an invariant, the function 0(0*, V°) must be of the form

ø(øi,yo) = /‘(0,yo) ) (2.31)

where f is an invariant function characteristic of the material system in 
question. Similarly, since also p is invariant, we must have

- g(9,p) (2.32)

where the function g(d, p) is connected with /’(Ø, V°) by he relation

g(6,p) = /‘(ö> v°) + °PV° (2-33)
following from (2.23).

Obviously, any state function which only depends on (0, V°) or (0, p) 
is relativistically invariant, i.e. velocity-independent. From (2.27, 29) and 
(2.31, 32) we get

1 df(6,V°) vo=^j(O,p)
0 dV° ’ 0 dp

(2-34)

Thus, p and V° are functions of (0, V°) and (0, p), respectively, in accord
ance with the invariance of these quantities. It is easily seen that also the 
right hand side of (2.28) is a function of 0 and V° only, in accordance with 
the invariance of the entropy. For, by (2.31), (2.28) becomes

S = (2.35)

and, by differentiation of 0 in (1.20) with respect to 0*, we get

(2.36)

However, as a function of the variables (Øf, V), 0(0*, V) does not only depend 
on 0 and V, but also on the fourth component 04 of the coldness vector. 
In fact, since
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we get from (2.31)

V04
V0 = yV=__> (2.37)

ø(0*, V) = f 0 (2.38)

By differentiating this equation with respect to 0* (for constant V) and using 
(2.30) and (2.27) we get back the relations (2.7).

Multiplication of the equations (2.8, 9) by 0 = 0° gives

OiE. = _ 0O(HO + poyO) I
0<Pi = 0*Gj = - 0°H°. ) (2*39)

This discloses the physical meaning of the invariant functions ø and 0 
defined by (2.20, 21). Obviously we have

where
0 = 0°,

00 = 0°H°-S° = 0°F°(0°, V°)

(2.40)

(2.41)

is the classical potential (1.15) obtained by multiplying the free energy of 
Helmholtz by the coldness. Similarly we have

0 = 00 (2-42)
where

øø = 0O(HO+pOyo)_5o = 0oGo (2.43)
and

Qo = Eo+poVo (2-44)

is the classical free energy of Gibbs.
Thus, 0 and V7 are the natural relativistic generalizations of the classical 

thermodynamic potentials — the free energies of Helmholtz and Gibbs. They 
have all the properties which, as mentioned in section 1, should be required 
of relativistic potentials. By the equations (2.27-30), all state functions are 
expressed in terms of partial derivatives of the potentials with respect to 
the variables which determine the state. In the rest system, three of the 
five equations (2.27) simply express the vanishing of the momentum 
and the two remaining equations are identical with the classical equations 
(1.16) which are equivalent to (1.2). In contrast to the equations (2.27-30), 
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which comprise the transformation properties of all thermodynamic state 
functions under Lorentz transformations, the Planck relations (1.8) are 
rather trivial transcriptions of the equation (1.2) in the rest system. In excess 
of (1.2), (1.8) only contains the transformation properties of S, p and V. 
The function F(Tp, V) does not determine all thermodynamic properties of 
the system. For instance, there is no equation analogous to (1.3) by which 
the energy H is determined, not to speak of the components of the momen
tum G. Thus, the free energy F(7>,V), as defined by (1.6), does not have 
all the properties of a thermodynamical potential.

From (2.31, 32) and (2.40—44) we get, since 9 = 0° and p = p°

0o = ^øo, yo) = øoøo(øo, yo) 1
I f 2 45) 

00 = g(QO,pO) = 0OG°(0°,JO°). )

The functions F°(0°, V°) and G°(0°, can in principle be determined by 
usual thermodynamical experiments in the laboratory performed on bodies 
at rest. Then, by (2.45), also the functions f(6°, V°) and g(0°, p°) are known 
functions of the state variables, and by replacing 0° by 0 and p° by p in 
these functions we get the expressions (2.31, 32) for the relativistic poten
tials <Z>(0Z, V°), ^(O1’, p). Also the function ø(ØS V) of the variables (0*, V) 
is then determined by (2.38) and, by means of (2.27-30), we can calculate 
all thermodynamical state functions in an arbitrary system of inertia.

3. Statistical Interpretation of the Relativistic Potentials

Historically, statistical mechanics was developed with the aim to provide 
a ‘rational explanation’ of the thermodynamic laws and thereby obtaining 
a means of calculating the thermodynamical state functions from the know
ledge of the mechanical structure of the system in question. In non-relativi- 
stic mechanics the statistical methods developed by Gibbs supplied the most 
general solution of this problem. In the paper quoted in reference [4], a 
relativistic generalization of Gibbs’ classical theory was given which, as we 
shall see now, supplies an immediate interpretation of the relativistic thermo
dynamical potentials introduced in section 2.

Consider a system consisting of n particles of proper mass in which, in 
a certain system of inertia S°, are acted upon by forces derivable from a 
timeindependent mechanical potential

(3.1)
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Here, the are invariant parameters describing the configurations of the 
external systems which may influence our system. Ug will contain the inter
action E°(x°,az) of the separate particles with outside systems (for instance 
the walls of a container) as well as the interaction W°(x°,. . ,x°) between 
the particles. Thus, we assume that the forces acting on the particles are 
derivable from a potential of the form

n
L'S - 2 U0(X?,ai) + \V0(X°1,...x0n). (3.2)

r = 1

This assumption restricts somewhat the applicability of the theory, for in 
relativity theory it is generally not possible to describe the interaction be
tween the particles in this simple way. In general the interaction has to be 
described by an intermediary field which has to be treated as a separate 
physical system with an infinite number of degrees of freedom. However, 
for a gas of particles of nucleonic mass, the relation

kTQ
- « 1, (L = Boltzmann’s constant) (3-3)

me2

is very well satisfied, which means that the system may be treated non- 
relativistically in S°. In fact, if m is the mass of a nucleon, the proper tem
perature T° would have to be of the order of 1013 °K in order to make the 
left hand side of (3.3) of order unity and, as far as we know, temperatures 
of this order of magnitude are reached nowhere in our present universe. 
A violation of the condition (3.3) will occur only for electrons under very 
special circumstances. Excluding these rare cases from our consideration, it 
has a good meaning to describe the interaction in S° by a potential of the 
form (3.2). As regards the mutual interaction of the particles the treatment 
is then only approximate (although in practically all cases an extremely 
good approximation), but for a system of non-interacting particles, where 
W° = 0, the detailed treatment given in reference [4] is exact.

In the following development, the potential U° will be regarded as an 
invariant scalar which means that we, in any Lorentz system S, introduce 
a function t7g(.r*, . . . ,xi) of the space-time coordinates of the particles defined 
by

= ^0(x°,...x r°,...xJ,a), (3.4)

where xlr = {xr,ctr} and x® are connected by the Lorentz transformation 
leading from S° to 5. Thus, Ug is obtained from Ug by eliminating the 
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arguments x[}r in the latter function by means of the Lorentz transformation. 
If we put all the time-coordinates equal to t in this function,

6 = L = ....=/« = /, (3.5)

we arrive at a definite function of the space-coordinates xr and the time 
variable t\

Ug(Xl, . . . Xr, . . . Xn, I, a). (3.6)

This function will of course depend on the external parameters (a), but it 
will obviously also depend on the parameters of the Lorentz transformation, 
in particular on the relative velocity v of S° and S. Thus, for a special 
Lorentz transformation, where

ær = Xær~v/r)’ yr = lJr> zr = "r > (3-7)

the function (3.6) is

L-/. . . .,xr,yr,zr>. . .,t,a) = U°(. . . ,y(xr-vt),yr,zr, . . .,a). (3.8) 

Now let us assume that our system (the gas of n particles) is in a state of 
thermodynamical equilibrium which in a Lorentz system S is described by 
the state variables (ô^a). In this situation we do not have a precise knowledge 
of the mechanical state, which is defined by the 6n ‘coordinates’

(£//) = (Pi,xlt. . .,pr,xr,. . . ./>„,*„) (3.9)

of the points in the phase space £(S) of the system in S. According to the 
developments in reference |4], the situation in question is statistically de
scribed by the following ‘canonical’ probability density ^(£/() in 27(S):

W) - exp {(0 + 0<P’G,«))/*}
n

Pi = 2 Pt + Pg(xr, . . xr, . . ,xn, f,a)Vilc2 
r =1

(3.10)

(cf. Eqs. (4; 7.1, 2) in section 7 of reference [4]). In (3.10), prt = {pr, -Ejc} 
is the ‘bare’ four-momentum of the r’th particle, Vi is the four-velocity of 
S° relative to S, and the quantity <P is defined by

Mat.Fys.Medd.Dan.Vid.Selsk. 37, no. 4. 2
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or

J ■ I $({)<« = 1.

6n
d<$ = U

// = 1

(3.11)

exp{ - 0(0’, a)/kj (3.12)

A comparison of (2.22) with (4; 5.38) in reference [4] shows that 
the statistical quantity ø in (3.10) may be identified with the relativistic 
thermodynamic potential introduced in section 2 of the present paper.

In the ‘rest’ system S°, (3.10) reduces to the canonical distribution of 
Gibbs

^° = exp{(0ü-0°$J)//c}, (3.13)
where

0° = 0,
and

$ = 2 ^°+^° (3.14)
r = 1

is the Hamiltonian in .8°. Further, in S° the equation (3.12) becomes

exp{- 0°(0°,«)/&} (3.15)

which in the usual wav gives us 0ü(0°,c/) as a function of (0°,u).
In section 7 of reference [4] we have calculated the functions 0 and 0° 

in (3.12, 15). According to (4; 7,53, 54, 33, 35, 41) we have

0(0*,a) = f(O,a), <P°(0Q,(i) = f(6°,a), (3.16)

where /’(0,a) is a function of the norm 0 and (a), defined by

1(0,a) = /p(0) + l'Q(0,ci),

^{-0F^fk}dpG 2 %2/n2cÅ’
(0

H2(1) (imc20/Å’)

(3.17)

(3.18)
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exp{-/g(0,a)/À} = J * * j exp{-ØU°(xJ, . . . x^, a~)/k}dx[. . ,dx°n. (3.19)

For non-interacting particles the latter expression reduces to I he 7/th power 
of the expression (4; 7.41). In the case considered here, where (3.3) holds, 
the argument in the Hankel function in (3.18) is very large and we can 
substitute this function by its asymptotical expansion. Then (3.18) becomes

2nmk , ,
exp{-/p(G)M = —exp{-nmc20/Å-} (3.20)

in accordance with the corresponding formula in non-relativistic statistical 
mechanics. From (4; 7.56, 57) we get 

WM = <^0>°
~ 00r c2 i (3.21)

which is the statistical expression for the inclusive four-momentum of the 
system defined by (2.3).

We shall now in particular consider the case where the interaction 
between the particles and the walls of a container are the only external 
forces on the particles. Then, L°(x^,a) is zero inside the container and 
increases rapidly to a very high value when the particles approach the walls. 
Let us for simplicity assume that the container has the form of a cylinder 
with the axis lying in the direction of the x°-axis of the system S° and with 
the endwalls placed at .r° = 0 and .r° = Z°, respectively. If the latter wall is 
a movable piston we may change the volume V° by moving the piston i.e. 
by changing Z°, for we have

V° = F°/° (3.22)

where F° is the (constant) area of the endwalls. With this arrangement the 
only way in which the system (the gas) can be influenced mechanically by 
the external world is by changing the position of the piston. Thus, in this 
case there is only one external parameter a for which we can choose 1° or F° 
and

/xM = /w°) = mn (3.23)

is a function of 0 and 1° or V°. For non-interacting particles, where W° = 9 
and L/°(x°,a) has the property mentioned above, we get from (3.19)

2*
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expf-^/Ä-} = (F°/°)w = yon

4 = -ÂmZu(F°/°) = knlaV0.

Thus, for an ideal gas fq is a function of /° or V° only, but for interacting 
particles fq (and /) will in general depend on both 0 and V°. Therefore, 
in our case, (3.16) gives

0(0«, V«) = /(0>yo)) 00(00, yo) = /(0o,yo) (3.24)

and the equations (3.21) become identical with four of the thermodynamical 
equations (2.27). Further, if we identify the mean value of the force p per 
unit area exerted by the piston on the fluid with the thermodynamic pres
sure p, we get from (4; 7.15)

p = <p>
1 00(0«, V»)

0
1 0/(0, V°)

0 dV°

po = <po>o i 0/(0°, v°)

0° dv°
1 00°(0°,V0)

00 ~dV°

(3.25)

in accordance with the last equations (2.27) and (1.16). This identification is 
justified, since the ratio of the fluctuation to the mean value of the piston 
force is proportional to and therefore generally speaking extremely 
small for a ponderable amount of matter, where n is of the order of Avogadro’s 
number. In the rest system the equations (3.21) reduce to the single equation

df(O°, V°)
d0°

V°)

do°
(3.26)

The statistical mean value equations (3.21,25, 26) are in complete agreement 
with the thermodynamic equations (2.27) and (1.16).

Thus, relativistic statistical mechanics provides an immediate interpreta
tion of the thermodynamic potential ø and the relations (2.27) and, by means 
of (3.12) (with (i = V°), we are now also able to calculate 0 = f(O,V0') when 
the mechanical potential Ug is given. However, in accordance with the 
remarks at the end of section 2, it is not necessary to perform the calcula
tion of 0 in the general system S for, by (3.16—19), the function /is already 
completely determined by the equation (3.15) holding in the rest system S°.

Now we turn to the question of the statistical mechanical interpretation 
of the relativistic potential 0(0«,p) introduced in (2.21). Just as in the case 
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of ø it is sufficient to give an interpretation of the function 7/o(0(),/)°) in the 
rest system. In the preceding considerations it was found that 0(0*, V°) 
appears as an essential quantity in the canonical distribution (3.10) corres
ponding to a situation where the thermodynical variables 0Z and V0 have 
well-defined values. In S° this means that the piston is fixed in a definite 
position at x° = 1° and that the gas has been brought in thermal contact 
with a heat reservoir of coldness 0°. Thermodynamically, fixed values of 0° 
and V° correspond to definite values of H° and p° for the energy and the 
pressure as given by the equations of state, for instance in the form (1.16). 
Therefore, we can eliminate F° and define the state by (0°,p°) instead of by 
(0°,V°) and the potential 7/0 is then given by the relation (2.23), i.e.

'/'o = 00 + QOpOyo . (3-27)

However, in the statistical mechanical description, fixed values of 0° and 
V° do not correspond to exactly defined values for the energy and the pres
sure and the thermodynamical equations of state are valid only for the 
mean values of the energy and the external force. As often emphasized by 
Niels Bohr [12], this circumstance constitutes an instructive example of 
complementarity in classical physics. Energy and pressure are complement
ary to temperature and volume, respectively, in much the same way as 
momentum and position of a particle in quantum mechanics. It is true that, 
for systems of ponderable size where n is very large, the complementary 
character of the mentioned quantities is usually not apparent, but in prin
ciple, and in special cases also in praxis, the recognition of this comple
mentarity is of importance for the understanding of the properties of thermo
dynamical systems.

As in quantum mechanics, the complementarity of the mentioned ther
modynamical quantities is due to the fact that the experimental arrangements 
which allow the fixation of definite values for the quantities in question are 
mutually exclusive. For instance, in order to give definite values to the 
coldness 0° and the volume Vr° we have, as already mentioned, to bring 
the gas in thermal contact with a large heat reservoir for a sufficiently long 
time during which the piston is fastened in a fixed position. When thermal 
equilibrium is reached, any previous knowledge of the energy and the piston 
force will be lost, and our knowledge of the mechanical state of the system 
after this procedure is adequately described by the canonical distribution 
(3.13, 15) with a = V°, according to which the thermodynamical relations 
(1.16) are valid for the mean values of the energy and pressure only.
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On the other hand, if we want to assure definite values for the coldness 
0° and the pressure p°, we have to unfasten the piston and subject it to a 
constant external force

= F°p° (3.28)

instead of keeping it in a fixed position. After thermal equilibrium is reached, 
this situation is again adequately described by a canonical distribution 
(3.13, 15) but now applied to the system (g + p) consisting of the gas plus 
the piston. The latter can be treated as a particle of macroscopical mass M 
which can move freely along the .r°-axis. Thus, if n is the number of degrees 
of freedom of the gas, the corresponding number for the system (g + /?) is 
n+ 1, and the coordinate 1° of the piston and the volume V° given by (3.22) 
do not have exactly defined values in this situation. The constant external 
force (3.28) is derivable from a potential

with 
di°

and as external parameter a for the system (g + p) we may choose the pres
sure p°.

If we use V° instead of 1° as ‘generalized’ coordinate of the piston, its 
(non-relativistic) kinetic energy is

= MK02/2F02 = , V° = (3.30)

The corresponding canonical momentum is

/>" - (3.31)
dV

Now, the mechanical potential of the system gas + piston is

U^g + p) = t/ff°(x;,...x“,V0)+F0(VV) (3-32)

and its Hamiltonian (disregarding the rest energy of the piston)

%+w - ®J+/V’ + F“P“/2M. (3.33)

Thus, the probability density (3.13) of the system (</ +p) is
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^tø + p) ~ CXP{(^(fir + p) ®°§?g + p))/^}- (3.34)

It is a function of the phase-coordinates (£°) of the gas and the canonical 
variables and V° of the piston, and ^(y + pÇ) is determined by the equation

- 1- (3.35)

We may now calculate the mean values of quantities referring to the gas 
and the piston. According to the equipartition theorem, the mean value of 
the kinetic energy of the piston is kT° and the velocity of the piston will be 
of the order vp~ (kTolM)1/2. For M of the order of a gram, vp is therefore 
extremely small which means that the piston will practically always be found 
at rest in spite of its being unfastened. By integration of (3.34) over pp from 
— oo to +oo we get the probability density $ß*(£°, V°) of finding the gas at a 
point (ê°) in its phase space and with a volume V°, irrespective of the mo
mentum of the piston. Obviously is of the form

where
$* = exp{(^O-0o§*)/Ä)},

£* = §X£0’v°)+p0^0

(3.36)

(3.37)

and 0° is a function of 0° and p° given by

1.= f f exp{C//o-0o.§:!:(^o,Vo,po))/7<}^O^PO = (3.38)

Further integration of over (£°) gives us the probability density W(V°) 
for the gas having the volume V°. By means of (3.36, 37) and (3.15) (with 
o = V°), we get

W(V°) = exp{(ïzo - 0(0°, V°)-0opoV°)lk}, (3.39)

(3.40)

The latter equation may also be written

o
(3-41)
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which allows to calculate ’//()(0°,//') when the function 0°(0°, y°) in (3.24) 
is known. The most probable value V° of V° is determined by the equation

i.e.

rfW(V°)

0T°

00(00^0)

dv°
+ 0°p° = 0.

(3.42)

By partial differentiation of (3.40) with respect to 6°, we get in the usual way

or

0^0(00, ;J0)

d0°
o

øø(ø°,yo)
00°

W(V°)dV° = 0

ay>o(0o)pO)

d0° = <
50(00, yo)

00°
>°+/)O<yo>o.

(3.43)

Further, by differentiations of (3.40) with respect to p°,

< y°>°
1 000(00,p0)

0° dp°
(3-44)

{V0} . <(V»-<yO>0)2>0 _ k 020°(0°,p°) k 0<y°>°
(3.45)002 Qp02 0° dp0 ’

where <j2{T0} is the square of the fluctuation of the volume around its 
mean value < y°>°. Since both < y°)° and o2{ Vr°} are proportional to n, the 
ratio R of the fluctuation to the mean value of y° is proportional to n_1/2:

B(0°,p°) (3.46)

0<y°>o
Apart from very special cases where --------- - is exceptionally large (like at

0jD°
transitions from one phase of the gas to another), the fluctuation of y° is 
completely negligible for a ponderable amount of gas where n is of the order 
of Avogadro’s number. Therefore, in such cases <y°)° may be identified 
with the thermodynamical variable T°, and the relation (3.44) between 
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volume, coldness, and pressure must be identical with the relation (3.25). 
Moreover, the most probable volume V° given by (3.42) must be equal 
to the mean value in this case, i.e.

yo = <yo>o} (3-47)

in accordance with the result of a comparison of (3.42) with (3.25). This 
means that the function (3.39) (for fixed 6° and p°) must have a very steep 
maximum at V = V° = <V°/’0 with a mean breadth equal to 7?(0°, p°). 
Thus the integral in (3.40) becomes equal to the maximum value W(V°) 
limes R, and we get from (3.40)

7f(O°,po)exp{(yyo(0o,/>°) -0(0o,ÿo) - 0OpOÿo)/À.}. = ! (3>48)
or

W°(0°,7Jo) = 0°(0°,ÿo) + 0°p°V°~klnR. (3.49)

Since 0°, 0° and V° are proportional to n while InR only contains the loga
rithm of n, we may neglect the last term in (3.49) in the case of large n where 
(3.47) holds.

11ence 0°(0°,p°) = øo(øo;< yo>o) + øopo< yo>O- (3 50)

A comparison of this equation with the thermodynamical relation (3.27) 
shows that the statistical quantity 0° entering in (3.36) may be identified 
with the thermodynamical potential 0°(0°, p°) .

The quantity defined by (3.37) is equal to the energy of the gas plus 
the potential energy (3.29) of the piston in the external field. By partial 
differentiation of (3.38) with respect to 0° we get for the mean value of H*

<&*> (3.51)

000(00, yo)
on account of (3.43). According to (3.26), ----- --------- is the mean value of

the energy of the gas in a canonical ensemble with a fixed value y° of
00°(0°, T0) 

the volume. Hence, <--------------- >° is the mean value of in the ensemble
øy° 9

with varying T° described by (3.34). This is in accordance with the relation 
obtained by taking the mean value of the equation (3.37) over the ensemble 
(3.34)
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<§*>° = <§J>° + ?°< V°>°. (3.52)

The equations (3.51, 52) are exact for all n. However, for large n, where 
the function W(V°) has a steep maximum and (3.47) holds, (3.51) becomes

(3.53)

A comparison with the first equation (1.16) shows that the first term on the 
right hand side of (3.53) must be identified with the thermodynamical energy 
H° of the gas and, taking account of (2.8), we come to the conclusion that 
<§*)° in (3.51, 53) must be the statistical analogue of the thermodyna
mical enthalpy E° of the gas in the rest system. The (exact) mean value 
equations (3.44, 51) are obviously the statistical analogues of the thermo
dynamical relations (2.29) which, in the rest system S°, reduce to the two 
equations

1 a^ocoo.p0)

0° dp°
E° =

dlPn(0°,p°)
000

(3.54)

Thus, the statistical quantity V70 given by (3.38) or (3.40) has all the pro
perties of the thermodynamical potential lE°. It is closely connected with 
the 0o-function for the system gas + piston (if we disregard the rest energy 
of the piston). From the definitions (3.38, 35) of 770 and &0(g + P) one easily finds

0°(? + p) Ï70 - kin
\/2nMk/eQ

(3.55)

Since 0° and V70 are proportional to n, we may neglect the last term on the 
right side of this equation for a ponderable amount of gas. Thus, for large n,

(3.55) 

In an arbitrary system S, the corresponding potential ^(0*, p) is obtained 
from y7o(0°,/j°) by replacing 0° and p° by the norm 0 and p, respectively. 
These considerations lead to the following physical interpretation of the 
four-enthalpy Ei in an arbitrary system S. The quantities Ei, as defined by 
(2.4) or (2.29), are equal to the components of the inclusive four-momentum 
of the system (g + p) minus MVi where M is the proper mass of the piston.

The Niels Bohr Institute 
and NORDITA
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